# Overfitting Simulation#

This notebook demonstrates overfitting, where we learn noise too well.

## Setup#

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import statsmodels.api as sm
import statsmodels.formula.api as smf
import scipy.stats as sps


And initialize a random number generator:

rng = np.random.default_rng(20201015)


## Simulating Data#

Let’s define a function to generate n data points. This does three things:

1. Generates n samples from $$X$$ uniformly at random in the range $$[0,10)$$ (by multiplying random by 10)

2. Computes $$Y$$ by $$y_i = 2 x_i + \epsilon$$, where $$\epsilon \sim \mathrm{Normal}(0,2)$$

3. Puts $$X$$ and $$Y$$ into a data frame

The function:

def generate(n):
xs = rng.random(n) * 10
ys = xs * 2 + rng.standard_normal(n) * 2
return pd.DataFrame({'X': xs, 'Y': ys})


Now we’re going to define a function to generate polynomials of a varible. For order $$k$$, it will produce $$x^1, x^2, \dots, x^k$$ as columns of a data frame:

def poly_expand(series, order=4):
df = pd.DataFrame({'X': series})
for i in range(2, order+1):
df[f'X{i}'] = series ** i
return df


Now let’s generate our initial data and plot it:

data = generate(30)
data.plot.scatter('X', 'Y')

<matplotlib.axes._subplots.AxesSubplot at 0x165d85a6160> So far, we’ve been using StatsModels formula interface. That is syntax sugar on top of a lower-level matrix-based interface. For this analysis, we will use that, because it’s easier to programatically set up and manipulate.

The matrix interface requires us to construct an OLS instance with a $$n \times 1$$ array of endogenous (outcome) variables Y, and a $$n \times k$$ matrix of exogenous variables. The rows are data points, and the columns of this matrix are predictor variables. If we want an intercept, it needs to be included as a predictor variable whose value is always 1 — the sm.add_constant function does this.

Let’s set it up and fit the model:

X = sm.add_constant(data[['X']])
lin = sm.OLS(data['Y'], X)
lin = lin.fit()
lin.summary()

Dep. Variable: R-squared: Y 0.919 OLS 0.916 Least Squares 317.7 Fri, 16 Oct 2020 8.13e-17 18:51:19 -59.322 30 122.6 28 125.4 1 nonrobust
coef std err t P>|t| [0.025 0.975] -0.7818 0.639 -1.223 0.231 -2.091 0.527 2.2016 0.124 17.824 0.000 1.949 2.455
 Omnibus: Durbin-Watson: 7.323 1.736 0.026 5.772 0.801 0.0558 4.431 10.3

Warnings:
 Standard Errors assume that the covariance matrix of the errors is correctly specified.

Now let’s fit a 4th-order polynomial model

$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4$

We’ll this by adding a constant to the poly_expand of the data frame, and fitting the model:

X = sm.add_constant(poly_expand(data['X']))
poly = sm.OLS(data['Y'], X)
poly = poly.fit()
poly.summary()

Dep. Variable: R-squared: Y 0.938 OLS 0.928 Least Squares 94.82 Fri, 16 Oct 2020 9.90e-15 18:52:06 -55.274 30 120.5 25 127.6 4 nonrobust
coef std err t P>|t| [0.025 0.975] -0.1426 1.135 -0.126 0.901 -2.479 2.194 -1.1816 1.803 -0.655 0.518 -4.896 2.532 1.7365 0.805 2.157 0.041 0.079 3.394 -0.2776 0.130 -2.144 0.042 -0.544 -0.011 0.0138 0.007 2.027 0.053 -0.000 0.028
 Omnibus: Durbin-Watson: 5.714 1.689 0.057 4.196 0.622 0.123 4.345 19800

Warnings:
 Standard Errors assume that the covariance matrix of the errors is correctly specified.
 The condition number is large, 1.98e+04. This might indicate that there are
strong multicollinearity or other numerical problems.

And now the same with the 10th-order polynomial:

$\hat{y} = \sum_{i=0}^{10} \beta_i x^i$
X = sm.add_constant(poly_expand(data['X'], order=10))
poly10 = sm.OLS(data['Y'], X)
poly10 = poly10.fit()
poly10.summary()

Dep. Variable: R-squared: Y 0.946 OLS 0.918 Least Squares 33.49 Fri, 16 Oct 2020 5.98e-10 18:53:18 -53.154 30 128.3 19 143.7 10 nonrobust
coef std err t P>|t| [0.025 0.975] 0.5949 2.061 0.289 0.776 -3.719 4.909 -1.1089 19.180 -0.058 0.954 -41.254 39.036 -18.4133 51.012 -0.361 0.722 -125.182 88.355 35.0879 60.911 0.576 0.571 -92.401 162.577 -25.8969 39.040 -0.663 0.515 -107.608 55.814 10.3116 14.824 0.696 0.495 -20.715 41.338 -2.4437 3.495 -0.699 0.493 -9.759 4.872 0.3545 0.517 0.686 0.501 -0.727 1.436 -0.0309 0.047 -0.664 0.515 -0.128 0.066 0.0015 0.002 0.636 0.532 -0.003 0.006 -3.017e-05 4.97e-05 -0.607 0.551 -0.000 7.39e-05
 Omnibus: Durbin-Watson: 4.482 1.745 0.106 3.177 0.422 0.204 4.353 4.8e+11

Warnings:
 Standard Errors assume that the covariance matrix of the errors is correctly specified.
 The condition number is large, 4.8e+11. This might indicate that there are
strong multicollinearity or other numerical problems.

Now let’s plot the data and curves. This time, I’m going to create a linspace, as usual, and then use the fitted model’s predict function to generate the curves (this is easier than manually extracting and writing our own formula):

plt.scatter(data.X, data.Y)
xsp = np.linspace(np.min(data.X), np.max(data.X), 100)
# ysp = poly.predict(sm.add_constant(poly_expand(xsp)))
ysp10 = poly10.predict(sm.add_constant(poly_expand(xsp, order=10)))
plt.plot(xsp, ylp, color='orange', label='linear')
# plt.plot(xsp, ysp, color='red', label='poly4')
plt.plot(xsp, ysp10, color='green', label='poly10')
plt.legend()
plt.show() What are our squared errors on the training data?

np.mean(np.square(lin.resid))

3.0553433680686

np.mean(np.square(poly10.resid))

2.0253086976466195


## New Data#

What about new points from our distribution? Let’s generate some:

test = generate(30)
test['LinErr'] = test['Y'] - test['LinP']
test['Poly10P'] = poly10.predict(sm.add_constant(poly_expand(test.X, 10)))
test['Poly10Err'] = test['Y'] - test['Poly10P']


And compute our test error for each model:

np.mean(np.square(test['LinErr']))

2.992713620832882

np.mean(np.square(test['Poly10Err']))

4.382587964880173


And plot the new points, along wiht the old points and our model:

plt.scatter(data.X, data.Y, color='steelblue')
plt.scatter(test.X, test.Y, color='red', marker='+')
xsp = np.linspace(np.min(data.X), np.max(data.X), 100)
# ysp = poly.predict(sm.add_constant(poly_expand(xsp)))
ysp10 = poly10.predict(sm.add_constant(poly_expand(xsp, order=10))) 