MovieLens Time Series
Contents
MovieLens Time Series#
This notebook demonstrates basic time series analysis with the MovieLens data.
Setup#
Import libraries:
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import statsmodels.api as sm
import statsmodels.formula.api as smf
Load the MovieLens 25M data:
movies = pd.read_csv('ml-25m/movies.csv').set_index('movieId')
movies.info(memory_usage='deep')
<class 'pandas.core.frame.DataFrame'>
Int64Index: 62423 entries, 1 to 209171
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 title 62423 non-null object
1 genres 62423 non-null object
dtypes: object(2)
memory usage: 9.6 MB
ratings = pd.read_csv('ml-25m/ratings.csv', dtype={
'movieId': 'i4',
'userId': 'i4',
'rating': 'f4',
'timestamp': 'i4'
})
ratings.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25000095 entries, 0 to 25000094
Data columns (total 4 columns):
# Column Dtype
--- ------ -----
0 userId int32
1 movieId int32
2 rating float32
3 timestamp int32
dtypes: float32(1), int32(3)
memory usage: 381.5 MB
MovieLens represents time with UNIX timestamps: seconds since the UNIX epoch. Convert those to a Pandas DateTime:
ratings['timestamp'] = pd.to_datetime(ratings['timestamp'], unit='s')
Basic Aggregations#
In order to do time-series operations, we need to index by time series, and sort the index:
rts = ratings.set_index('timestamp').sort_index()
rts.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 25000095 entries, 1995-01-09 11:46:49 to 2019-11-21 09:15:03
Data columns (total 3 columns):
# Column Dtype
--- ------ -----
0 userId int32
1 movieId int32
2 rating float32
dtypes: float32(1), int32(2)
memory usage: 476.8 MB
monthly_ratings = rts.resample('1M')['rating'].count()
monthly_ratings
timestamp
1995-01-31 3
1995-02-28 0
1995-03-31 0
1995-04-30 0
1995-05-31 0
...
2019-07-31 99159
2019-08-31 107210
2019-09-30 125523
2019-10-31 96364
2019-11-30 66464
Freq: M, Name: rating, Length: 299, dtype: int64
monthly_ratings.plot()
plt.ylabel('# of Ratings')
plt.xlabel('Month')
plt.show()
sns.lineplot(data=monthly_ratings)
plt.ylabel('# of Ratings')
plt.xlabel('Month')
plt.show()
Selecting Subsets#
Letβs do a range select for 2010:
rs_2010 = rts.loc['2010-01-01':'2010-12-31']
rs_2010.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 792436 entries, 2010-01-01 00:01:13 to 2010-12-31 23:58:34
Data columns (total 3 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 userId 792436 non-null int32
1 movieId 792436 non-null int32
2 rating 792436 non-null float32
dtypes: float32(1), int32(2)
memory usage: 15.1 MB
We can also index by time interval:
rs_jul2010 = rts.loc['2010-07']
rs_jul2010.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 66320 entries, 2010-07-01 00:23:42 to 2010-07-31 23:57:34
Data columns (total 3 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 userId 66320 non-null int32
1 movieId 66320 non-null int32
2 rating 66320 non-null float32
dtypes: float32(1), int32(2)
memory usage: 1.3 MB
Diff and Lag#
Letβs compute the month-over-month growth:
month_growth = monthly_ratings.diff()
month_growth
timestamp
1995-01-31 NaN
1995-02-28 -3.0
1995-03-31 0.0
1995-04-30 0.0
1995-05-31 0.0
...
2019-07-31 13083.0
2019-08-31 8051.0
2019-09-30 18313.0
2019-10-31 -29159.0
2019-11-30 -29900.0
Freq: M, Name: rating, Length: 299, dtype: float64
The first value is NaN, because there is no βpreviousβ value.
Letβs plot this:
month_growth.plot()
<matplotlib.axes._subplots.AxesSubplot at 0x1b90de21eb0>
Monthly Unique Visitors#
A common metric for web sites is monthly unique visitors. We canβt quite compute that, because we have no records of people who just came to the web site but did not rate anything. But we can compute monthly unique active users, where a user is active if they rated a movie:
uniques = rts.resample('1M')['userId'].nunique()
uniques.plot()
plt.ylabel('Unique Active Users')
plt.xlabel('Month')
plt.show()
We can show the monthly growth (increase/decrease in # of unique users):
plt.axhline(0, color='grey')
uniques.diff().plot()
plt.ylabel('Growth (Increase in Unique Users)')
plt.xlabel('Month')
plt.show()