We start by loading R libraries we will use:
library(tidyverse)
And set some R options:
options(repr.matrix.max.rows=20, repr.matrix.max.cols=20)
options(repr.plot.height=5)
exam_perf = read_csv("tbl-exam-perf.csv")
head(exam_perf)
What are the different assessment types?
exam_perf %>%
group_by(Assessment) %>%
summarize(NStudies = n(), AvgImprovement=mean(HedgeG))
Let's look at the distribution of improvements:
ggplot(exam_perf) +
aes(x=HedgeG) +
geom_vline(xintercept=0, color="blue") +
geom_histogram() +
facet_wrap(~ Assessment, scales="free")
err = function(x) {
n = length(x)
qt(0.975,df=n-1)*sd(x)/sqrt(n)
}
assess_means = exam_perf %>%
group_by(Discipline) %>%
summarize(AvgImp = mean(HedgeG), AvgLow = mean(Lower), AvgHigh=mean(Upper),
LB = mean(HedgeG) - err(HedgeG),
UB = mean(HedgeG) + err(HedgeG))
assess_means
ggplot(assess_means) +
aes(y=AvgImp, x=Discipline, ymin=LB, ymax=UB) +
geom_hline(yintercept=0, color="red") +
geom_point() + geom_errorbar(width=0.5)